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Abstract
Let Z

.= (Z1, Z2, . . . , Zn) represent the steady state of a zero-range process
in which n sites are occupied by m particles, with a jump rate between sites
given by g. If m = n (a particle density of 1) and Z∗

n is the maximum cluster
size, perfect condensation occurs if n − Z∗

n converges to 0 in probability as n
tends to infinity. In this paper, we improve the description of the conditions for
perfect condensation, first introduced by Jeon et al (2000 Ann. Prob. 28 1162)
and Jeon and March (2000 Stochastic Models. Proc. Int. Conf. on Stochastic
Models in Honor of Professor Donald A Dawson (Ottawa, Canada, 10–13 June
1998) p 233). Applying the results to a few special cases, we demonstrate the
existence of an interesting phase transition and conclude that the maximum
cluster size in a zero-range process is unstable with respect to fluctuations in
the jump rate, g.

PACS numbers: 02.50.Ey, 05.40.−a, 05.70.Fh

1. Introduction

A zero-range process is a system of n interacting particles distributed over m sites, allowing for
multiple occupancy of each site. The occupancy times (length of time that a particle spends
in a given site) are exponentially distributed with the parameter g(k), which depends only on
the total number of particles k at the site, and the particles jump to new sites according to a
given probability distribution. It is customary to interpret the k particles at a site as a k-cluster.
Zero-range processes were first introduced by Spitzer [3], although the growth of clusters
was not described until 30 years later. In the field of mathematics, the growth of clusters in
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zero-range processes was studied by Jeon, March and Pittel [1] as well as Jeon and March [2].
The discussion presented in [1] considered cases in which the jump rate was given by

g(k) = 1 +
β

k
, β > 0. (1.1)

This work demonstrated the existence of a condensation transition (theorem 2.2 in [1]).
Condensation transitions in zero-range processes were studied independently, in the

field of physics, by Evans for the conditions given in (1.1) [4]. After the discovery of
the condensation transition, several physicists applied the study of zero-range processes to
sandpile dynamics, interface growth, granular systems, network flows and transport processes.
These developments and applications are discussed in [5].

In [1], Jeon, March and Pittel also considered cases in which the rate function is given by

g(k) = k−α, −∞ < α < ∞, (1.2)

and showed that if the transition matrix {Pij }ni,j=1 is symmetric and irreducible, then two
striking transitions, with respect to the size of the largest cluster, are present under invariant
measures.

Assume that m = n, i.e. the density ρ = m/n = 1, and let Z
.= (Z1, Z2, · · · , Zn) be a

random vector corresponding to the invariant measure with a jump rate g and

Z∗
n = max

1�i�n
Zi. (1.3)

Then, we have the following theorem [1].

Theorem 1.1.

(a) If α > 1, then n − Z∗
n converges to 0 in probability.

(b) If α = 1, then n − Z∗
n weakly converges to a Poisson distribution with the parameter

equal to 1.
(c) If 0 < α < 1, then (n − Z∗

n)/n1−α converges to 1 in probability.
(d) If α = 0, then Z∗

n/ log n converges to log 2 in probability.
(e) If α < 0, then Z∗

n log(log n)/ log n converges to −α−1 in probability.

In the above theorem, (a) implies that all particles coalesce to form a single cluster
if α > 1. (b) and (c) imply that the cluster loses particles if α � 1, and an interesting
transition results. In the context of physics discussions, ‘condensation’ is generally defined in
terms of the maximum cluster size with respect to a positive fraction of the number of total
particles, and ‘complete condensation’ means that the maximum cluster size is of order n [6].
In this discussion, we use ‘perfect condensation’ to mean that all particles coalesce into a
single cluster. In [2], we used the term ‘condensation’ for ‘perfect condensation’. To reduce
confusion, we introduce these concepts precisely.

Definition 1.2.

(1) A condensation event occurs if Z∗
n/n converges to a positive constant, <1, in probability

as n tends to infinity.
(2) A complete condensation event occurs if Z∗

n/n converges to 1 in probability as n tends to
infinity.

(3) A perfect condensation event occurs if n − Z∗
n converges to 0 in probability as n tends to

infinity.
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The properties of perfect condensation depend strongly on the tightness of the sequence,
which is given by the following definition.

Definition 1.3. The sequence (n − Z∗
n, n � 1) is tight if, for any ε > 0, N and K exist such

that

P {n − Z∗
n � K} < ε, (1.4)

for all n > N .

The relation between tightness and perfect condensation was described in [2].

Theorem 1.4. Perfect condensation occurs if and only if the sequence (n − Z∗
n, n � 1) is

tight and ng(n) → 0.

Our aim here is to generalize the results in [2] and to find more relaxed conditions for
tightness. These results will facilitate a detailed understanding of the process of perfect
condensation.

In systems of many particles, the behavior of small numbers of particles has not
traditionally been studied. Recently, advances in the study of complex systems have
necessitated a higher level of detail in the description of these systems. Zero-range processes
have, in particular, been applied to network problems, and complete condensation has been
studied in this context [6].

Assume that g(k) is given by

g(k) = M

kα
, α > 1; (1.5)

then theorem 3.5 in [2] guarantees that (n − Z∗
n, n � 1) is tight. Therefore, from theorem 1.4

we see that perfect condensation occurs. The determination of tightness, however, is not an
easy task. By replacing M in (1.5) with a nontrivial function M(k) of k, which is bounded by
M1 � M(k) � M2, for some positive constants M1,M2, we provide an interesting example
of jump rates for which the condition ng(n) → 0 is satisfied, but (n − Z∗

n, n � 1) is not tight.
This example is important, in that it demonstrates that tightness is significantly affected by
perturbation of the jump rates.

In this study of the complex system driven by such a deterministic perturbation, we show
that a critical rate exists that distinguishes perfect condensation. One striking result is that
perfect condensation may not be preserved under small fluctuations near a critical jump rate
(theorems 4.2 and 4.3), even deep within regions of perfect condensation. This result indicates
the unstable nature of clustering dynamics in zero-range processes. Note that instability
of condensation in zero-range processes was studied by Grosskinsky, Chleboun and Schütz
[7]. They showed that a random perturbation of the jump rates changes the critical behavior
drastically.

This study is organized as follows: section 2 briefly introduces the study of zero-range
processes and invariant measures, section 3 presents a proof of the main theorems describing
the tightness of the sequence (n−Z∗

n, n � 1) and section 4 describes the applications of these
results to special cases.

2. Zero-range processes

Let Nn = {1, 2, . . . , n} represent a lattice with periodic boundary conditions, and let the
configuration space be given by �∗

n = {0, 1, 2, . . .}Nn . Assume that there is a stochastic matrix
{Pij }1�i,j�n, with Pij = Pji and

∑n
j=1 Pij = 1 for all i, which makes the Markov chain

3
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defined on (2.1) irreducible. Let g be a nonnegative function of nonnegative integers with
g(0) = 0, which represents the jump rate. A zero-range process is a stochastic process defined
on �∗

n with the following dynamics. Assume that the process is in the state η at a particular
time, which suggests that at site i there is an η(i)-cluster. The η(i)-cluster is present at a
given site, i, for an exponentially distributed length of time according to g(η(i)), and then
allocates a particle to the cluster at a new site j with the probability Pij . This reduces η(i) to
η(i) − 1, and η(j) increases to η(j) + 1. Note that these dynamics do not permit the creation
or annihilation of particles.

Let ηt
.= (ηt (1), ηt (2), . . . , ηt (n)), 0 � t < ∞, be a Markov process that represents such

dynamics. Because ηt preserves the total number of particles, i.e.
∑n

i=1 ηt (i) = ∑n
i=1 η0(i)

for all t, and because Pij is irreducible, if we let

�m
n =

{
η ∈ �∗

n :
n∑

i=1

η(i) = m

}
, 1 � m < ∞, (2.1)

then there is a unique invariant measure on �m
n , say νm

n , that produces a steady state in
the process. Let Z

.= (Z1, Z2, . . . , Zn) be a random vector corresponding to the invariant
measure. The following lemma defines an explicit invariant measure on �m

n .

Lemma 2.1 (Spitzer [3]). For any jump rate g(l), and for any η ∈ �m
n , let

μm
n (η) =

n∏
i=1

{g!(η(i))}−1, (2.2)

where g!(l) = g(l)g(l − 1)g(l − 2) · · · g(1), with the convention g!(0) = 1. Let

νm
n (η) = 1

	
μm

n (η), (2.3)

where 	 is the normalizing constant given by 	 = μm
n

(
�m

n

) = ∑
η∈�m

n
μm

n (η). Then νm
n is the

equilibrium measure corresponding to g(l).

Let
∣∣�m

n

∣∣ be the number of elements in �m
n . Then, since �m

n is the set of nonnegative
integers satisfying the equation

x1 + x2 + · · · + xn = m,

elementary combinatorics gives

Lemma 2.2. ∣∣�m
n

∣∣ =
(

n + m − 1
n − 1

)
.

3. Main theorems and proofs

For simplicity, we will consider only the case in which m = n, i.e. systems with a density of
1. The general case of m/n → ρ(>0) as m, n → ∞ is similar. To simplify the notation, we
will indicate �m

n ,μm
n , νm

n as �n,μn, νn, respectively.
Since the configuration space consists of nonnegative integer partitions of n, the

equilibrium measure is a random measure on the partitions. To analyze the random structure,
we introduce a family of independent and identically distributed random variables {Xi}ni=1 on
{0, 1, . . .} defined by

P {Xi = k} = xk

	̃g!(k)
,

4
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for x ∈ R. Here, 	̃ is the normalizing constant. One can easily show that

(Z1, Z2, . . . , Zn) =d (X1, X2, . . . , Xn|X1 + X2 + · · · + Xn = n), (3.1)

where =d indicates that both terms are equal in distribution. That is, for any A1, A2, . . . ,

An ⊂ R,

P {Z1 ∈ A1, Z2 ∈ A2, . . . , Zn ∈ An} (3.2)

= P {X1 ∈ A1, X2 ∈ A2, . . . , Xn ∈ An,X1 + X2 + · · · + Xn = n}
P {X1 + X2 + · · · + Xn = n} . (3.3)

The goal is to choose x to maximize the denominator in (3.3) and successfully remove the
dependence structure. This type of conditioning device has been used in studies of random
partitions by many investigators, see references in [1].

Recall that Z∗
n = max1�i�n Zi .

Theorem 3.1. Let An be the logarithmic average of g given by

An = 1

n

n∑
i=1

log(g(i)). (3.4)

If there exist constants C1, C2 > 0 such that the following conditions hold for large n, then
the sequence (n − Z∗

n, n � 1) is tight:

exp(An) � C1

n
, (C.1)

log(g(n)) − An � −C2. (C.2)

Proof. To prove the theorem, we construct independent and identically distributed random
variables {Xi}i=1,2,..., with the judicious choice of

x = xn = exp

(
An − log n

n

)
, (3.5)

as explained above. Using xn, we define a random variable Xn by

P {Xn = k} = qk

	̃
, qk = xk

n

g!(k)
, 0 � k � n, (3.6)

where 	̃ = ∑
0�k�n qk is the normalizing constant.

Let X1, X2, . . . , Xn be independent and identically distributed random variables with the
same distribution as Xn. Then we have

(Z1, Z2, . . . , Zn) =d (X1, X2, . . . , Xn|X1 + X2 + · · · + Xn = n). (3.7)

This intuitive choice of xn makes the distribution of Xn U-shaped with q0 = 1, q1 =
O(1/n), q2 = O(1/n2), . . . , qn = 1/n, which restricts the denominator in (3.3) to values
greater than a constant c > 0.

To see this, let us investigate the asymptotic behavior of all qk. First, since

qk = xk
n

g!(k)

= exp
(
kAn − k

n
log n

)
exp

(∑k
i=1 log(g(i))

)
5
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= exp
(
kAn − ∑k

i=1 log(g(i))
)

exp
(

k
n

log n
)

= exp(k(An − Ak))

exp
(

k
n

log n
) ,

we have

q0 = 1,

q1 = xn � exp(An) � C1

n
,

q2 = x2
n

g!(2)
� exp(2An)

g!(2)
� C3

n2
,

for some constant C3. We also have

qn = 1

exp(log n)
= 1

n
.

To check qk, 3 � k � n − 1, we claim that the ratio Pk
.= qn−k/qn can be expressed as

the following lemma.

Lemma 3.2.

Pk
.= qn−k

qn

= exp

(
k

n
log n

)
exp(αk), (3.8)

where

αk = (n − k)

(
log(g(n)) − An

n − 1
+

log(g(n − 1)) − An−1

n − 2

+ · · · +
log(g(n − k + 1)) − An−k+1

n − k

)
.

Proof. The proof will be performed by induction on k. Let rk = qk/qk+1, then

rk = g(k + 1)/xn = exp

(
1

n
log n

)
exp(log(g(k + 1)) − An) (3.9)

and for k = 1,

P1 = qn−1

qn

= rn−1

= exp

(
1

n
log n

)
exp(log(g(n)) − An)

= exp

(
1

n
log n

)
exp(α1).

Therefore, (3.8) is true for k = 1. Now, assume that (3.8) is true for k. Then

Pk+1 = qn−(k+1)

qn

= qn−k

qn

qn−k−1

qn−k

= Pkrn−k−1

= exp

(
k + 1

n
log n

)
exp(αk + log(g(n − k)) − An).

6
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Here,

αk + log(g(n − k)) − An = αk + (log(g(n − k)) − An−k) + (An−k − An−k+1)

+ · · · + (An−1 − An).

Note that

Al−1 − Al = 1

l − 1

l−1∑
i=1

log(g(i)) − 1

l

l∑
i=1

log(g(i))

= l
∑l−1

i=1 log(g(i)) − (l − 1)
∑l

i=1 log(g(i))

l(l − 1)

=
∑l−1

i=1 log(g(i)) − (l − 1) log(g(l))

l(l − 1)

=
∑l

i=1 log(g(i)) − l log(g(l))

l(l − 1)

= Al − log(g(l))

l − 1
.

Therefore,

αk + log(g(n − k)) − An

= αk + (log(g(n − k)) − An−k) +
An−k+1 − log(g(n − k + 1))

n − k

+ · · · +
An − log(g(n))

n − 1

= n − k − 1

n − 1
(log(g(n)) − An) + · · · +

n − k − 1

n − k − 1
(log(g(n − k)) − An−k)

= αk+1.

That is,

Pk+1 = exp

(
k + 1

n
log n

)
exp (αk+1) , (3.10)

and the proof of lemma 3.2 is completed. �

Now, let us estimate 	̃ = ∑n
i=0 qi to show that it is of order 1 + O

(
1
n

)
, which is needed to

prove that the denominator in (3.3) is bigger than a constant C > 0. To do this, choose N such
that conditions (C.1), (C.2) are satisfied for all n � N and C2N � 8, where C2 is the constant
in (C.2). Then, for 1 � i � N ,

qi = exp(i(An − Ai))

exp
(

i
n

log n
) (3.11)

� C(exp(An))
i (3.12)

� C

ni
. (3.13)

For N < i � n, we subdivide the interval and apply lemma 3.2 to obtain

7
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(i)

∑
N<i�√

n

qi

qn

=
∑

N<i�√
n

exp

(
n − i

n
log n + αn−i

)

�
∑

N<i�√
n

exp

(
log n − i

(
log(g(n)) − An

n − 1

+ · · · +
log(g(i + 1)) − Ai+1

i

))

�
∑

N<i�√
n

exp

(
log n − C2N

(
1

n − 1
+ · · · +

1

i

))

�
√

n exp(log n − C2N(log n − log(
√

n) + o(log n)))

�
√

n exp(log n − 4(log n + o(log n))

�
√

n exp(−3 log n + o(log n))

� Cn−2,

for large n.
(ii)

∑
√

n<i�n/2

qi

qn

�
∑

√
n<i�n/2

exp

(
log n − C2

√
n

(
1

n − 1
+ · · · +

1

i

))

� n

2
exp

(
log n − C2

√
n

1

n − 1

n

2

)

� n

2
exp

(
log n − C2

√
n

2

)
� Cn−2,

for large n.
(iii)

∑
n/2<i�n−√

n

qi

qn

�
∑

n/2<i�n−√
n

exp

(
log n − C2

n

2

(
1

n − 1
+ · · · +

1

i

))

� n

2
exp

(
log n − C2

n

2

1

n − 1

√
n

)

� n exp

(
−C2

2

√
n

)
� Cn−2,

for large n.
(iv)

∑
n−√

n<i�n

qi

qn

�
∑

n−√
n<i�n

exp

(
n − i

n
log n − C2i

(
1

n − 1
+ · · · +

1

i

))

�
∑

n−√
n<i�n

exp

(√
n log n

n
− C2i

1

n − 1
(n − i)

)

8
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�
∑

0�k<
√

n

exp

(
−C2k + o(1) + O

(
log n√

n

))

� C,

for some constant C independent of n, because the sum is bounded by a geometric series.

From (i)–(iv), and given that qn = 1/n, we have

	̃ =
n∑

i=0

qi

= q0 + (q1 + · · · + qN) +
n∑

i=N+1

qi

= 1 + O

(
1

n

)
+ O(qn)

= 1 + O

(
1

n

)
.

Therefore,

(	̃)n � 	0 < ∞
for some constant 	0. Hence

P {X1 + X2 + · · · + Xn = n} � nP {X1 = n,X2 = 0, · · · , Xn = 0}

= n
qn

	̃

qn−1
0

(	̃)n−1

� 1

	0
,

for large n, because nqn = 1 and q0 = 1.
Now, let X∗

n = max1�j�n Xj . Then, because(
Z1

n, Z
2
n, . . . , Z

n
n

) =d (X1, X2, . . . , Xn|X1 + X2 + . . . + Xn = n), (3.14)

for any fixed l,

P {Z∗
n � n − l} = P {X∗

n � n − l,
∑

Xi = n}
P {X1 + X2 + · · · + Xn = n}

� 	0P {X∗
n � n − l}.

Because all Xi are independent and identically distributed,

P {X∗
n = i} � nP {X1 = i}.

Therefore,

P {X∗
n � n − l} =

n−l∑
i=1

P {X∗
n = i}

= P {X∗
n = 1} +

∑
2�i�n−√

n

P {X∗
n = i} +

∑
n−√

n<i�n−l

P {X∗
n = i}.

9
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The first term P {X1 = 1, . . . , Xn = 1} = (q1/	̃)n tends to 0. It can be easily seen that the
second term also tends to 0, using the results from (3.13) and (i), (ii), (iii). Indeed, for large n,∑

2�i�n−√
n

P {X∗
n = i} � n

∑
2�i�n−√

n

P {X1 = i}

� n
∑

2�i�n−√
n

qi

	̃

� Cn(n−2) � C

n
.

The last term is arbitrarily small for large l, as described in (iv), which demonstrates the
tightness of (n − Z∗

n, n � 1). �

If ng(n) → 0 and (n − Z∗
n, n � 1) is tight, then theorem 1.4 implies that perfect

condensation occurs. Therefore, we have

Corollary 3.1. Assume ng(n) → 0. Then, under the conditions of theorem 3.1, perfect
condensation occurs.

4. Applications

In this section, we consider the application of the theorems presented in the previous section
to the analysis of some interesting cases. Consider the case in which

g(n) = M

nα
, α > 0. (4.1)

Then,

(i) From Stirling’s formula,

An = 1

n

n∑
i=1

log

(
M

iα

)

= 1

n
log

(
Mn

(n!)α

)
∼ log M − α log n + α + o(1).

Hence,

exp(An) ∼ C

nα
(1 + o(1)),

and if α � 1, then condition (C.1) is satisfied.
(ii) Given condition (C.2), because

log(g(n)) = log M − α log n,

we have

log(g(n)) − An ∼ −α < 0.

Therefore, if α � 1, then g(n) satisfies the conditions of theorem 3.1, which implies the
tightness of (n − Z∗

n, n � 1). Furthermore, if α > 1, then

ng(n) = M

nα−1
→ 0. (4.2)

10
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From corollary 3.1, perfect condensation occurs, and we recover the results presented in [1].
Interesting stability behavior for zero-range processes occurs if M is replaced with a

nontrivial function of n. To see this, let us consider the case in which g(n) is given by

g(n) =

⎧⎪⎨
⎪⎩

M

nα
, if 22k < n � 22k+1

1

nα
, if 22k−1 < n � 22k,

(4.3)

for k = 0, 1, . . .. Note that because 2g(2n) = g(n), g satisfies a scaling property.
Application of theorem 3.1 to this perturbed model demonstrates that if

exp

(
−3

2
α

)
< M < exp

(
3

2
α

)
,

(n−Z∗
n, n � 1) is tight. Furthermore, an interesting transition behavior to perfect condensation

can be shown, and the maximum cluster size is unstable with respect to perturbations in the
jump rate g, even if g is deep within the region of perfect condensation behavior. Indeed,

(i) From Stirling’s formula, we have

An ∼ 1

n

n∑
i=1

log(g(i))

= 1

n

(
−

n∑
i=1

α log i + [n] log M

)
,

where [n] is the number of terms of the form M/iα , for i � n. Therefore,

An ∼ −α(−1 + log n) +
[n]

n
log M, (4.4)

and we have

exp(An) � C

nα
.

(ii) Since

log(g(n)) =
{

log M − α log n, if 22k < n � 22k+1

−α log n, if 22k−1 < n � 22k,

condition (C.2) is satisfied if

log M − α log n + α(−1 + log n) − [n]

n
log M � −C2

and

−α log n + α(−1 + log n) − [n]

n
log M � −C2,

for some C2 > 0. That is,(
1 − [n]

n

)
log M < α and

[n]

n
log M > −α.

Because n/3 + o(n) � [n] � 2n/3, we have

exp
(− 3

2α
)

< M < exp
(

3
2α

)
.

11
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From (i), (ii), we conclude that if

exp
(− 3

2α
)

< M < exp
(

3
2α

)
, α � 1,

then (n − Z∗
n, n � 1) is tight. Corollary 3.1 implies that if α > 1, then perfect condensation

occurs. Therefore, we have

Theorem 4.1. Assume

exp
(− 3

2α
)

< M < exp
(

3
2α

)
, α > 1;

then perfect condensation occurs.

Assume that perfect condensation occurs for M = M1 and M = M2. We can show that
perfect condensation occurs for any M between M1 and M2. Moreover, by the same method
employed in [2], we can show that if M �

(
1
2

)3α
, then (n−Z∗

n, n � 1) is not tight. The above
theorem, together with these facts, implies the existence of a critical point around which the
characteristics of the maximum cluster size of the process change.

Theorem 4.2 (Transition). For α > 1, there is a critical point M∗ satisfying(
1
2

)3α � M∗ � exp
(− 3

2α
)

(4.5)

such that perfect condensation occurs for M > M∗, but not for M < M∗.

Proof. Let μn,M be the un-normalized zero-range invariant measure corresponding to g in
(4.3). Then

μn,M(η) =
n∏

i=1

{g!(η(i))}−1 =
n∏

i=1

(η(i)!)α

Mk
(4.6)

for some k ∈ {0, 1, 2, . . .}. In this expression, since k depends on η, we can define a function
φ : �n → {0, 1, 2, . . .} by

φ(η) = k. (4.7)

Let η1 = (n, 0, . . . , 0), η2 = (0, n, 0, . . . , 0), . . . , ηn = (0, . . . , 0, n), and let

�̃n = {η1, η2, . . . , ηn}
be the set of all configurations with an n-cluster. We also define the sets

�1 = {η ∈ �n : φ(η) � φ(η1)},
�2 = {η ∈ �n : φ(η) < φ(η1)}.

Note that �1 ∪ �2 = �n and �1 ∩ �2 = φ.
Assume that perfect condensation occurs for M = M1 and M = M2, where M1 < M2.

Then, for i = 1, 2,

P {Z1 + · · · + Zn < n}
P {Z1 + · · · + Zn = n} = μn,Mi

(�n\�̃n)

μn,Mi
(�̃n)

→ 0. (4.8)

For M0 satisfying M1 < M0 < M2,

P {Z1 + · · · + Zn < n}
P {Z1 + · · · + Zn = n} = μn,M0(�n\�̃n)

μn,M0(�̃n)

= μn,M0(�1\�̃n)

μn,M0(�̃n)
+

μn,M0(�2)

μn,M0(�̃n)

� μn,M2(�1\�̃n)

μn,M2(�̃n)
+

μn,M1(�2)

μn,M1(�̃n)
.

12
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The last inequality is true from the definitions of �1 and �2. From (4.8), the final term tends
to zero as n tends to infinity.

In [2], for the case α = 1, we have shown that if M � (1/2)3, then (n − Z∗
n, n � 1) is

not tight. We can easily generalize this result to the case in which α � 1, and we conclude
that if M � (1/2)3α , then (n − Z∗

n, n � 1) is not tight. The existence of such a critical point
is, therefore, clear. �

Note that if α > 1, (4.1) exhibits perfect condensation. Theorem 4.2 indicates that
even for large α(�1), perturbations in M produce a phase that is not perfect condensation.
This is, to some degree, counterintuitive. The natural intuition is that if g lies deep within
a region of perfect condensation, then perfect condensation should be preserved under small
perturbations. Our result, however, contradicts this intuition.

Moreover, we can demonstrate the existence of subsequences nk and M in (4.3) which
dictate that the fraction of the maximum cluster size Z∗

nk
/nk is bounded by a constant smaller

than 1. In other words, the perturbed subsequence is not even within the regime of complete
condensation. Indeed, let nk = 22k . Then we have the following theorem.

Theorem 4.3. For any ε > 0, there exists M such that

Z∗
nk

/nk � 1
2 + ε (4.9)

for large nk.

Proof. For any l, 1 � l � nk , let Al be the set of configurations with the maximum cluster
size greater than or equal to l. That is,

Al = {η ∈ �nk
: there exists i such that η(i) � l}.

Note that the set Al\Al+1 consists of all configurations in which the maximum cluster size is
exactly l. Let η1 = (nk/2, nk/2, 0, . . . , 0) and let η2 = (l, η(2), η(3), . . . , η(n)) be an element
which has the maximum weight in Al\Al+1, i.e. μnk

(η2) � μnk
(η) for any η ∈ Al\Al+1. Then,

for l � (1/2 + ε)nk ,

P {Znk
∈ Al\Al+1} = νnk

(Al\Al+1)

� μnk
(Al\Al+1)

μnk
(η1)

�
nk

(
2nk − l − 1

nk − 1

)
μnk

(η2)

μnk
(η1)

.

The last inequality is obtained by applying lemma 2.2 to the fact that the maximum cluster
size in the set Al\Al+1 is l > nk/2, the maximum cluster may be located at nk different sites,
the number of remaining particles is nk − l and μnk

(η2) � μnk
(η) for any η ∈ Al\Al+1.

Because (
2nk − l − 1

nk − 1

)

is decreasing in l, substituting l with nk/2 − 1 yields(
2nk − l − 1

nk − 1

)
�

(
3nk/2
nk − 1

)
.

13
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Introducing a polynomial P(nk), with a degree that is independent of nk and l, and which
may differ in each expression, we have, for M < 1,

P {Znk
∈ Al\Al+1} � P(nk)

(
3nk/2
nk − 1

)
g!(nk/2)g!(nk/2)

g!(l)g!(η(2)) · · · g!(η(n))

� P(nk)

(
3nk/2
nk − 1

) (
l!η(2)! · · · η(n)!

(nk/2)!(nk/2)!

)α

Ml0 ,

where l0 = φ(η1) − φ(η2), for φ defined in (4.7). To obtain a bound for l0, note that since
g(n) = 1/nα , if nk/2 < n � nk and g(n) = M/nα , if nk/4 < n � nk/2, . . ., the number of
M’s from l-cluster and nk/2-cluster are the same as nk(2/3 + o(1))/2 and the number of M’s
from the clusters consisting of nk − l particles is bounded by 2(nk − l)/3. That is,

φ(η1) − φ(η2) � 2 · 1

2
nk

(
2

3
+ o(1)

)
− 1

2
nk

(
2

3
+ o(1)

)
− 2

3
(nk − l)

�
(

1

3
+ o(1)

)
nk − 2

3
nk +

2

3

(
1

2
+ ε

)
nk

= 2

3
ε(1 + o(1))nk.

Since η(2) + · · · + η(n) = nk − l, we have η(2)! · · · η(n)! � (nk − l)!. Therefore,

P {Znk
∈ Al\Al+1} � P(nk)

(
3nk/2
nk − 1

) (
l!(nk − l)!

(nk/2)!(nk/2)!

)α

Ml0

= P(nk)

(
3nk/2
nk − 1

) (
nk

nk/2

)α (
nk

l

)−α

Ml0

� P(nk)

(
3nk/2
nk − 1

) (
nk

nk/2

)α

Ml0 .

Applying the Stirling formula, we easily see that(
3nk/2
nk − 1

)
∼ P(nk)λ

nk

(
nk

nk/2

)
∼ P(nk)2

nk ,

where λ = √
3

3
/
√

2. Therefore,

P {Znk
∈ Al\Al+1} � P(nk)(2

αλ)nkM2(ε+o(1))nk/3

� P(nk)(2
αλM2(ε+o(1))/3)nk ,

for large nk. The probability that the maximum cluster size is greater than or equal to (1/2+ε)nk

can be estimated by

P

{
Znk

∈
⋃

l�(1/2+ε)nk

Al\Al+1

}
�

∑
l�(1/2+ε)nk

P (nk)(2
αλM2(ε+o(1))/3)nk

= P(nk)(2
αλM2(ε+o(1))/3)nk .

The equality holds because there are at most nk/2 terms in the summation, and the degree of
P(nk), which may differ in each expression, is independent of nk and l.

The final term decays to zero exponentially as n tends to infinity, if M2ε/3 < 1/(2αλ). As
a result, the probability that the maximum cluster size is larger than (1/2 + ε)nk tends to zero
as nk tends to infinity. �
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